
Towards a cloud-based System for Software Protection and Licensing

Andreas Schaad1, Bjoern Grohmann2 and Oliver Winzenried2

Ferdinand Brasser3 and Ahmad-Reza Sadeghi3

1University of Applied Sciences Offenburg, Dept. of Media & Information, Offenburg, Germany
2Wibu-Systems AG, Rueppurer Strasse 52, 76137 Karlsruhe, Germany

3University of Darmstadt, Mornewegstrasse 32, 64293 Darmstadt, Germany

andreas.schaad@hs-offenburg.de, bjoern.grohmann || oliver.winzenried@wibu.com,

fbrasser || ahmad.sadeghi@trust.tu-darmstadt.de

Keywords: Software Encryption, Licensing, Industry 4.0, Cloud Infrastructure

Abstract: In this paper we report on the commercial background as well as resulting high-level architecture and design

of a cloud-based system for cryptographic software protection and licensing. This is based on the experiences

and insights gained in the context of a real-world commercial R&D project at Wibu-Systems AG, a company

that specialises in software encryption and licensing solutions.

1 INTRODUCTION

The protection of software, digital artefacts and

intellectual property becomes continuously more

challenging with the increasing interconnection of

industrial components. Traditional approaches to

protect software are the combination of encryption,

code obfuscation and locally attached hardware trust

anchors (often called “dongle”). This dongle provides

required cryptographic material to en- and decrypt

application code and data at runtime of a system. At

the same time access to protected functionality of the

software can be controlled to implement commercial

licensing models.

However, this approach does not necessarily scale

(technically and economically) in physically and

logically distributed systems. The question is whether

it is possible to provide dongle functionality as a set

of cloud-based services.

On basis of the experiences gained in an early stage

industrial proof of concept, we describe a set of

requirements for such a real-time cloud-based

software protection and licensing service. We discuss

a possible corresponding architecture and resulting

design decisions. The commercial implications of

offering such a cryptographic cloud service are also

addressed.

The presented work in this position paper will be

further conducted and extended with concepts from

the trusted computing domain in a national 3-year

funded project “CloudProtect”. The goal is to build a

highly scalable and secure cloud service that provides

required cryptographic material in real-time to

decrypt protected parts of a software stack.

We hope our short discussion can serve researchers

as a scenario to further position their own research

work.

2 BACKGROUND

The increasing automation in the industrial sector

requires the protection (confidentiality and integrity)

of software. This software could be the highly

confidential algorithm for a laser cutting machine,

configuration data of a welding machine or a digital

blueprint required by a 3D printer. Specifically,

where machines may run in countries with different

approaches to protecting intellectual property, the

owner or operator of a machine wants to protect and

exercise control over such digital assets.

For that reason, approaches to protecting software

and data against reverse engineering or tampering by

means of encryption and obfuscation are widely used.

Such technologies can at the same time enable the

owner of some software to define license conditions

for the user. Granting access to a specific part of a

software is thus done with respect to security as well

as commercial policies.

mailto:oliver.winzenried@wibu.com
mailto:ahmad.sadeghi@trust.tu-darmstadt.de

2.1 Traditional technical approach

2.2.1 Protecting Software

A vendor of software (ISV – Independent Software

Vendor) encrypts his products before selling the

software to end customers. In other words, the vendor

of a machine would encrypt and/or obfuscate

software that is sold in combination with a machine.

Technically, the ISV will protect his software at build

time with the help of specific commercial libraries

available for most modern software stacks (C++,

Java, .Net, …).

In a very simple scenario that means that a .Net or

Java program is encrypted at a method level and the

overall call stack is made aware of the fact that in

order to execute such a protected method some

cryptographic key is required. The vendor will also

define the supported commercial licensing models (In

the simplest case: Gold, Silver or Bronze versions of

the same software). The end user should thus only be

able to use the software according to what was

commercially agreed and paid for.

This approach not only keeps data confidential as

long as possible but also supports implementation of

concepts such as “counters” to measure how often a

functionality may be invoked.

2.2.1 Activating Software

Once such protected software is shipped to the end

user or operator it first has to be activated. A set of

unique cryptographic tokens is generated on basis of

a fingerprint (by combining CPU, Operating System,

Disk Size, …) of the customer system and transferred

to the local trust anchor (i.e. either a physical dongle

attached to a computer or controller of a machine or a

software dongle hidden in the machine logic).

2.2.1 Using Protected Software

When the software is eventually used in production it

will check whether it can be started at all, whether

certain branches or functions / methods can be

executed or how (often) some functionality can be

executed (as defined in the commercial license

agreement). Non-authorised invocation of functions

will fail.

All such checks are done against a (external

hardware) dongle that basically acts as a small

cryptographic processor and key store. Though in

essence a cryptographic (symmetric) key is

decrypting code in real-time we refer to this operation

as performing a “license check”.

2.2 Requirements

Though in larger on-premise settings, a licensing

server will allow a group of users to work with

protected software, there are still certain issues with

such current traditional approaches:

 Physical dongles are tamperproof but if lost,

the keys are also lost.

 Pure software-based dongles (and thus required

decryption keys) are possible – but are

significantly easier to attack (especially when a

machine is operated in non-trusted

environment).

 If an ISV wants to offer a pure cloud solution,

maybe even in combination with a machine, the

protection and licensing service should also be

offered as a service (SaaS).

 Current on-premise solutions using local

licensing servers to support larger groups of

users or machines can not be directly used in a

cloud setting.

 Current on-premise licensing is based on very

coarse parameters and it would be desirable to

measure precisly how a software is used (in

accordance with existing privacy regulations).

The introduction of a cloud-service for software

protection and licensing requires to consider technical

as well as commercial requirements. At the current

moment we are not aware of any such cloud-based

service and operational infrastructure.

2.2.1 Technical Requirements

A set of selected high-level technical requirements

can be summarised as follows:

 The license service shall provide the required

cryptographic material to allow a service

consumer to decrypt software at runtime.

 The service consumer will interact in real-time

with this cloud service and, if the commercial

license supports this, receive the required keys

to perform decryption.

 The software owner can define at which

intervals a check is required, e.g. for certain

applications even every 10 seconds or less.

 If a network connection is not available for a

configurable time, usage of the software must

still be possible.

Figure 1: CloudProtect Architecture

 The cloud-based license server must be able to

handle parallel incoming license validation

requests at a high rate.

 Exchanged data must be secured at the

transport and message layer.

2.3.2 Commercial Requirements

The commercial requirements can be summarised as

follows: The overall cost of offering such a service

(pure technical costs as well as administrative) must

be lower than the generated revenue. While this

sounds trivial at first, we now have to deal with a

situation where computation of cryptographic

material is not done by a locally attached dongle (and

thus consumption of local electricity) anymore.

We have to consider that in a cloud model “license

checks” need to be performed for 1000s of end users

or services – and the required CPU cycles now need

to be paid for by the cloud operator. This requires us

to minimise technical and administrative costs if a

cloud licensing solution should be offered at a price

comparable to that of a traditional on-premise

solution. Offering this service without cannibalising

the existing revenues of on-premise software

protection solutions is a separate matter.

3 ARCHITECTURE

On basis of the discussed (selected) requirements we

discuss a first sketch of an architecture.

3.1 Core Cloud Service

A CloudProtect instance exhibits a highly available

load balancer (for example, based on NGINX) to

distribute license validation requests that are received

in high (parallel) frequency. At the moment we

assume a request every 10-15s per end user. An

average cloud server should serve 20 ISVs with each

having 5000 active customers (end users). On

average, we predict such a server to handle approx.

10.000 parallel license requests per second. An end

user could also be a machine or service representing

an IoT device.

A client (end user) running protected software

requires a proprietary demon. At the moment, this is

a separate program (.dll) that mediates the requests to

the cloud. In the future this functionality should be

compiled into the protected code directly.

This demon will also initiate a point-to-point

encryption between hosts as well as end-to-end

encrypted channel between services which is done on

basis of a proprietary implementation aligned with the

main concepts of the currently emerging TLS 1.3

specification. A dedicated keystore (HSM) will

support secure management of cryptographic root

keys.

License requests are distributed in a cluster of in-

memory data structures (for example, REDIS) and

final persistency is done in a NoSQL cluster (for

example, based on MongoDB).

This core functionality is offered as a virtual machine

that is running on servers with a minimum of 256 GB

Ram as fast memory access is the most important

technical requirement.

A key hierarchy defined by a Wibu controlled root

key is responsible for granting keys to ISVs to issue

license (keys). This key hierarchy is also used to

enable authentication of the cloud with respect to a

client.

For functionality such as managing user identities and

accounts a set of REST services will be offered in

combination with traditional full-stack web-

frameworks (e.g. Angular or VAADIN) that will run

on basis of out-of-the-box cloud services such as

Amazon RDS in combination with, for example,

scalable Amazon Beanstalk application servers.

3.2 Future Extensions

As part of the nationally funded “CloudProtect”
project we will investigate how to use existing trust
technologies in the overall scope of software
protection. As a secure element on the client side we
will evaluate proven TPM functionality (for example
to protect additional local encryption keys) or to serve
as a random number generator. We will specifically
address IoT clients running on minimal hardware
such as a Raspberry 3 with an additional Optiga TPM
(TPM, 2017) chip.
On both, the client as well as server side we will
evaluate SGX (Intel, 2017) and TEE technologies to
support isolated execution of functions. Though we
are aware of current limitations of such technologies
and existing attacks (Xu et al., 2015, Brasser et al.,
2017, Lee et al. 2017 and Moghimi et al. 2017) we are
still convinced that we need such isolated execution
environments in the long run and first mitigation have
been presented by the community already (Shih et al.,
2017, Chen et al., 2017 and Gruss et al., 2017).

4 RELATED WORK

Software Protection has been scientifically discussed
as early as (Kent, 1980), around the same time as
Wibu-Systems offered the first commercial solutions
as a printer port extension.

Oorschot later identified 4 approaches to software
protection (Oorschot, 2003): Obfuscation via
automated code-transformation; white-box
cryptography; Software Tamper Resistance; and
Software Diversity. Attacks on obfuscated software
(Rolles et al., 2009) and the resulting improvements
(Averbuch et al., 2013) are two competing disciplines
and hardware supported isolated execution has been
analysed extensively (Suh et al., 2007, Costan et al.,
2016, Koeberl et al, 2014 and Strackx et al. 2010).
On the commercial side, there are vendors that
already offer cloud-based license management
(Flexera, 2018). Prominent services such as STEAM
(Valve, 2018) also do, for example, offer the APIs
which application developers use to enforce such
access control checks. However, in both cases this is
not true software protection but rather an access-
control check based on a purchased license. The
Steam Bind service does in fact offer cryptographic
protection but has been reported to be broken
(Steamless, 2016).

5 CONCLUSIONS

In this paper we shared some of our experiences in the

development of an early proof of concept for a cloud-

based software protection and licensing service.

We discussed traditional approaches to software

protection and licensing, defined some high-level

requirements for a cloud-based service, presented an

architecture as well as touched on some commercial

considerations of how to get this service into

production and generate revenue.

This will now be further validated and extended in the

context of the “CloudProtect” project funded by the

German Ministry of Education & Research (BMBF)

where we will provide a fully implemented proof-of-

concept including trusted computing technologies as

well as an analysis of the commercial dimensions.

While we cannot share too many of the technical

details at this stage – mainly due to the fact that we

are still in the evaluation phase of the technologies we

will use for realizing, for example, the load balancer

or persistence - we hope to have provided some useful

insights into the applied usage of cryptography for

software protection in industrial settings.

REFERENCES

Averbuch, A., Kiperberg, M., Zaidenberg, N. 2013. Truly-

Protect: An Efficient VM-Based Software Protection.

IEEE Systems Journal.

Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K.,

Capkun, S., and Sadeghi, A.-R. 2017. Software Grand

Exposure: SGX Cache Attacks Are Practical. 11th

USENIX Workshop on Offensive Technologies

(WOOT)

Chen, S. Zhang, X., Reiter, M. K., Zhang, Y. 2017.

Detecting privileged side-channel attacks in shielded

execution with Déjá Vu. AsiaCCS

Collberg, C., Thomborson, C., Low D., 1997. A Taxonomy

of Obfuscating Transformations. Dept. Computer

Science, University of Auckland

Costan, V., Lebedev, I., Devadas, S. 2016. Sanctum:

Minimal Hardware Extensions for Strong Software

Isolation. 25th USENIX Security Symposium (USENIX

Security)

Flexera, 2018. https://www.flexera.com/products/software

-license-optimization/flexnet-manager-cloud-

infrastrucure.html

Gruss, D., Lettner, J., Schuster, F., Ohrimenko, O., Haller,

I., Costa, Strong, M. 2017. Efficient Cache Side-

Channel Protection using Hardware Transactional

Memory. 26th USENIX Security Symposium (USENIX

Security)

Koeberl, P., Schulz, S., Sadeghi, A.-R. Varadharajan, V.

2014. TrustLite: A security architecture for tiny

embedded devices. EuroSys.

Moghimi, A., Irazoqui, G., Eisenbarth, T. 2017.

CacheZoom: How SGX amplifies the power of cache

attacks. Technical report, arXiv:1703.06986

Oorschot, P. 2003 Revisiting Software Protection. 6th

International Conference on Information Security.

Rolles, R. 2009 Unpacking Virtualization Obfuscators. 3rd

USENIX Workshop on Offensive Technologies

(WOOT).

Steamless 2016 https://gitlab.com/atom0s/Steamless

Lee, S., Shih, M.-W., Gera, P., Kim, T., Kim, H., and

Peinado, M. 2017. Inferring fine-grained control flow

inside SGX enclaves with branch shadowing. USENIX

Security.

Strackx, R., Piessens, F., Preneel, B. 2010 Efficient

isolation of trusted subsystems in embedded systems.

Security and Privacy in Communication Networks.

Suh, G. E., O'Donnell, C. W., Devadas, S. 2007 Aegis: A

Single-Chip Secure Processor. IEEE Design & Test of

Computers.

Intel 2017 https://software.intel.com/en-us/sgx

Shih, M.-W., Lee, S., Kim, T., Peinado, M. 2017 T-SGX:

Eradicating controlled-channel attacks against enclave

programs. Network and Distributed System Security

Symposium (NDSS).

TPM, 2017 https://trustedcomputinggroup.org/

Valve, 2018 https://developer.valvesoftware.com/wiki/

Steam_Web_API

WIBU, 2018 http://www.wibu.com/de/digital-content-

protection.html

Xu, Y., Cui, W., Peinado, M. 2015 Controlled-Channel

Attacks: Deterministic Side Channels for Untrusted

Operating Systems. IEEE Symposium on Security and

Privacy (S&P).

http://www.wibu.com/de/digital-content-protection.html
http://www.wibu.com/de/digital-content-protection.html

