
CloudProtect – A Cloud-based Software Protection Service

Andreas Schaad
Univ. of Appl. Sciences Offenburg

Badstrasse 24, 77652 Offenburg
Germany

andreas.schaad@hs-offenburg.de

Björn Grohmann
Wibu-Systems AG

Rüppurer Str. 52, 76137 Karlsruhe
Germany

bjoern.grohmann@wibu.com

Oliver Winzenried
Wibu-Systems AG

Rüppurer Str. 52, 76137 Karlsruhe
Germany

oliver.winzenried@wibu.com

ABSTRACT

Protecting software from illegal access, intentional modification or
reverse engineering is an inherently difficult practical problem
involving code obfuscation techniques and real-time cryptographic
protection of code. In traditional systems a secure element (the
“dongle”) is used to protect software. However, this approach
suffers from several technical and economical drawbacks such as
the dongle being lost or broken.

We present a system that provides such dongles as a cloud service,
and more importantly, provides the required cryptographic
material to control access to software functionality in real-time.

This system is developed as part of an ongoing nationally funded
research project and is now entering a first trial stage with
stakeholders from different industrial sectors.

CCS CONCEPTS
• CCS → Security and privacy → Cryptography •
CCS → Security and privacy → Security services → Access
control • CCS → Networks → Network services → Cloud
computing

KEYWORDS
Software protection, cryptographic access control, cloud service

ACM Reference format:
Andreas Schaad, Björn Grohmann and Oliver Winzenried. 2019.
CloudProtect – A cloud-based software protection service. In Proceedings of
the 24th ACM Symposium on Access Control Models and Technologies
(SACMAT’19), June 3–6, 2019, Toronto, ON, Canada. ACM, New York, NY,
ACM. 3 pages. https://doi.org/10.1145/3322431.3326447

1 INTRODUCTION

The protection of software, digital artefacts and intellectual
property becomes continuously more challenging with the
increasing interconnection of industrial components. Traditional
approaches to protect software are the combination of encryption,
code obfuscation and locally attached hardware trust anchors
(often called “dongle”) [1]. This dongle provides required
cryptographic material to en- and decrypt application code and
data at runtime of a system. At the same time access to protected
functionality of the software can be controlled to implement
commercial licensing models. This can be done as fine-grained as
granting or denying access at method level of a program.

However, this approach does not necessarily scale (technically and
economically) in physically and logically distributed systems. The
question is whether it is possible to provide cryptographic dongle
functionality as a set of cloud-based services.

2 Traditional approach

Cryptographic access to software can be controlled as fine-grained
as to the individual method or function level (e.g. in Java, .Net,
C++) by an independent software vendor (ISV). The ISV thus
defines the commercial licenses for end users which are in turn
reflected in a cryptographic keychain rooted at the ISV. Once an
end user uses the software he bought, the locally attached (USB)
dongle and its tamperproof internal cryptographic processor will
provide the key material to access software (i.e. decrypt a required
subset of code).

Communication between the software and the dongle is mediated
through a daemon (the CodeMeter.dll) running in the background.
The process to initially set up the dongle does require an
activation process over a web portal where the end user enters an
activation code. If this is valid a so-called license container (i.e.
containing certificates and keys) is transferred to the locally
attached dongle. Figure 3 shows such a locally attached dongle
(CmStick/C) when opening the CodeMeter management console.

However, if this dongle is lost or damaged, the end user cannot
perform his work until a new dongle has been provided. For that
reason, most vendors of such solutions (including Wibu) provide
“soft” dongles that store keys in hidden local memory regions.
This, of course, significantly increases the attack surface.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

SACMAT '19, June 3–6, 2019, Toronto, ON, Canada
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6753-0/19/06…$15.00
https://doi.org/10.1145/3322431.3326447

Session: Models and Emerging Applications SACMAT ’19, June 3–6, 2019, Toronto, ON, Canada

219

Figure 1: CloudProtect Architecture

The research question was thus how a license container could be
offered as a real-time cloud service, feasible from a technical but
also commercial perspective (i.e. regarding operational costs).
Specifically, this last point is often neglected when offering a prior
“on-premise” service as a cloud service. As an analogy, consider
that in the traditional approach the customer provided the
operational costs (e.g. electricity) when using an individual dongle.
Now such costs are shifted towards the cloud operator. Although
they are negligible for a single dongle, they add up when offering
a service for thousands of end users in parallel.

3 Cloud Architecture

A CloudProtect server instance consists of three distinct layers:

 Load Balancing Layer
 Services Layer
 Date Storage Layer

The load balancer (for example, based on NGINX) distributes
license validation requests that are received in high (parallel)
frequency (Figure 1). At the moment, we assume a request every
10-15s per end user process. An average cloud server should serve
20 ISVs with each having 5000 active customers (end users). On
average, we predict such a server to handle approx. 10.000 license
(cryptographic access control) requests per second.

The service layer handles license management and corresponding
generation and distribution of cryptographic keys.

The data layer uses a NoSQL DBMS for final persistency as well as
an in-memory database for supporting the service layer.

An end user could also be a machine or service representing an
IoT device. A client (end user) running protected software requires
a proprietary daemon. At the moment, this is a separate program /
daemon (CodeMeter.dll) that mediates the requests to the cloud
instead of to the traditional hardware-based dongle.

The servers themselves are maintained in a professionally data
center near a central internet exchange point. For larger corporate
customers a server can be offered to run in an in-house cloud.

Figure 2: License administration portal for ISV

3.1 ISV perspective

The ISV will continue to use code obfuscation and encryption
tools as part of his local software development process. The ISV
will then use the cloud administration portal (Figure 2) under
https://wibu.cloud to create so called license containers. A
container does hold the actual licenses (cryptographic key
material) which have also been created by the ISV. A local client
process (the customer) will use credentials he received separately
to access a cloud container over a secure channel and thus obtain
the license material for evaluating an access request. This portal is
based on an Angular [2] and Web Assembly [3] stack.

3.2 Customer perspective

Figure 3 shows that a customer now has access to a cloud license
container (“TestConstainer”). More precisely, any access request to
parts of the protected software is mediated by the local daemon
which in turn requests the needed cryptographic keys from the
cloud.

Figure 3: Local protection management

Session: Models and Emerging Applications SACMAT ’19, June 3–6, 2019, Toronto, ON, Canada

220

Figure 4: Protected Application

How often and at which level such requests are made can be
configured as fine-grained as required (i.e. seconds). If a license is
either missing or does not commercially allow to provide access to
a specific function, the protected application will refuse to work
(Figure 4).

4 Related Work

Software Protection has been scientifically discussed as early as
[4], around the same time as Wibu-Systems offered the first
commercial solutions as a printer port extension.

Oorschot later identified 4 approaches to software protection [5]:
Obfuscation via automated code-transformation; white-box
cryptography; Software Tamper Resistance; and Software
Diversity. Attacks on obfuscated software [6] and the resulting
improvements [7] are two competing disciplines and hardware
supported isolated execution has been analysed extensively [8-11].

On the commercial side, there are vendors that already offer
cloud-based license management [12]. Prominent services such as
STEAM [13] also do, for example, offer the APIs which application
developers use to enforce such access control checks. However, in
both cases this is not true cryptographic software protection but
rather a one-time access-control check based on a purchased
license. The Steam Bind service does in fact offer cryptographic
protection but has been reported to be broken [14].

5 Summary and Conclusion

We discussed the technical implementation of a cloud-based
service to provide real-time cryptographic access control to

software. To our knowledge we are the first to enable such real-
time cryptographic access and license control as a cloud service.

This service can complement or fully replace traditional hardware-
based dongles and enable new business models. We had reported
on the initial requirements in [15] and now demonstrated practical
feasibility. In a next step we need to prove economic feasibility of
running such an access control service in a profitable fashion.

From a security perspective, we intend to address the integration
of Intel’s SGX [16] technology to further secure the interaction
between the local protection service and the cloud.

ACKNOWLEDGMENTS
This work was partially supported by the German Ministery of
Research and Education in the “CloudProtect” project under grant
number (FKZ) 16KIS0850.

REFERENCES
[1] https://www.wibu.com/de/produkte/codemeter.html
[2] https://angular.io/
[3] https://webassembly.org/
[4] Kent, S. 1980 Protecting externally supplied software in small computers.

Massachusetts Institute of Technology, Cambridge, MA, USA
[5] Oorschot, P. 2003 Revisiting Software Protection. 6th International Conference

on Information Security.
[6] Rolles, R. 2009 Unpacking Virtualization Obfuscators. 3rd USENIX Workshop

on Offensive Technologies (WOOT).
[7] Averbuch, A., Kiperberg, M., Zaidenberg, N. 2013. Truly-Protect: An Efficient

VM-Based Software Protection. IEEE Systems Journal.
[8] Suh, G. E., O'Donnell, C. W., Devadas, S. 2007 Aegis: A Single-Chip Secure

Processor. IEEE Design & Test of Computers.
[9] Costan, V., Lebedev, I., Devadas, S. 2016. Sanctum: Minimal Hardware

Extensions for Strong Software Isolation. 25th USENIX Security Symposium
(USENIX Security)

[10] Koeberl, P., Schulz, S., Sadeghi, A.-R. Varadharajan, V. 2014. TrustLite: A
security architecture for tiny embedded devices. EuroSys.

[11] Strackx, R., Piessens, F., Preneel, B. 2010 Efficient isolation of trusted subsystems
in embedded systems. Security and Privacy in Communication Networks.

[12] Flexera, 2018. https://www.flexera.com/products/software
-license-optimization/flexnet-manager-cloud-infrastrucure.html

[13] Valve, 2018 https://developer.valvesoftware.com/wiki/ Steam_Web_API
[14] Steamless 2016 https://gitlab.com/atom0s/Steamless
[15] Andreas Schaad, Björn Grohmann, Oliver Winzenried, Ferdinand Brasser,

Ahmad-Reza Sadeghi: Towards a Cloud-based System for Software Protection
and Licensing. ICETE (2) 2018: 698-702.

[16] https://www.intel.de/content/www/de/de/architecture-and-
technology/software-guard-extensions.html

Session: Models and Emerging Applications SACMAT ’19, June 3–6, 2019, Toronto, ON, Canada

221

