
NEWS AND INSIGHTS FROM THE WORLD OF ID SECURITY AUGUST 2023

ALSO IN THIS ISSUE
Eviden
Post-Quantum Cryptography on eID Documents

Wibu-Systems
Obfuscation vs Encryption: Friend or Foe?

Mühlbauer Group
ID Cards under the Magnifier

QUANTUMania!
Beware the Quantum Revolution!
Quantum Computers Pose Grave Risk to Digital ID Security

Infineon Technologies

FEATURED ARTICLE

THE VAULT | AUGUST 2023:::

24 25

OBFUSCATION VS ENCRYPTION: FRIENDS OR FOES?

OBFUSCATION
vs

ENCRYPTION:
Friends or Foes?

So how do you protect information? A cryptologist would say:
Nothing offers better protection than provably secure, well-
studied methods based on sound assumptions. Kerckhoffs'
principle states that security must never rely on the protection
method itself being secret. A cryptosystem should be secure
even if all information about it – except for a secret key – is
known to the public. In contrast, software protection usually
relies on obfuscating source code or executable programs as a
defense mechanism against reverse engineering, an approach

often dismissed as “security by obscurity”. But is it always that
simple? And how bad can it be in practice?

We wil l examine sof tware protection, and especially
obfuscation, from both a cryptologist's and a software
protector's point of view, thereby connecting the two worlds.
This will put theoretical results about the effectiveness and
limitations of obfuscation to the test of real-life experiences and
attack vectors.

Dr. Carmen Kempka & Maurice Heumann, Wibu-Systems AG

THE VAULT | AUGUST 2023:::

26 27

dr. carmen kempka studied computer
science at the University of Karlsruhe
(TH) with a focus on cryptography and
quantum computing. After completing
her PhD in 2014, she joined the Secure
Platform Laboratories of NTT in
Japan for two years of postdoctoral
research in cryptography. She moved
to WIBU-SYSTEMS AG in 2016, where
she is now responsible for R&D projects
and supports her colleagues with all
questions about cryptography and
security.

OBFUSCATION VS ENCRYPTION: FRIENDS OR FOES?

On the necessity of obfuscation

Given that well-established encryption methods like AES exist,
why do we even bother with obfuscation in the first place?

Of course, executable programs can be protected by the accepted
encryption methods. You can even have a more fine-grained
protection by encrypting methods separately and decrypting
only the parts you need at runtime. But the problem is, at some
point, the CPU needs to get executable commands to actually
fulfill the program's intended purpose. And points on an elliptic
curve or elements of a cyclic algebraic group have the bad habit
of not being executable on current hardware. So the curtain
has to drop eventually, and a would-be attacker can seize on
the plaintext executable statements for analysis. Cryptography
cannot help here. At this point, the only line of defense to keep
the adversary from trying reverse engineering is obfuscation.

What is obfuscation?

But what is obfuscation? Barak et.al. provided a simple definition
they call the “Virtual Black Box Obfuscation” (VBB), which
characterizes ideal obfuscation with the three following rules:

•	 The obfuscated program should not be significantly larger
than the original

•	 The obfuscated program should have the same functionality
as the original

•	 The obfuscated program reveals no more information to
the adversary than a black box would

Ideally, the obfuscated program should do the same as
the original would, without too much overhead impacting
performance or the program size, while all the adversary learns
from the obfuscated program is input-output behavior, which
they could learn anyway by simply executing the program.

Obfuscation is impossible!

Unfortunately, in the same paper, Barak et.al. proved that it is
impossible to design an obfuscator that meets this definition.
But is this final proof that obfuscation is, in fact, bound to be no
more than the frowned-upon “security by obscurity”?

The intention was never to disprove the purpose of obfuscation,
but to explore the limits and possibilities of this, until then,
oft-ignored complementary concept to cryptography.

Let us take a closer look at the actual paper’s findings. What
it really says is that there is no general obfuscator that can
obfuscate every existing program in the VBB sense. This does
not mean that “no program can be obfuscated”. It rather means
that “there is one program that cannot be obfuscated”. Or, as
stated in the paper: “As is usually the case with impossibility
results and lower bounds, we show that obfuscators (in the
“virtual black box” sense) do not exist by supplying a somewhat
contrived counterexample...".

In fact, there are functions (so-called “point functions”) that are
obfuscatable in the VBB sense, for example a password check.

But even for other functions, all hope is not lost. An alternative
definition called “indistinguishability obfuscation” has been
proposed to overcome the impossibility of VBB, and it has
been proved achievable with several candidates for obfuscators
already constructed. While this was an important step
towards closing the gap between theory and practice, these
constructions are still quite far from being practical. Running
an AES encryption with one of these constructions would, for
example, take not less than 272 years and consume several
petabytes of storage.

What can we learn from cryptography?

Given that we have all the experience from designing encryption
algorithms at hand, how can we use it to close the gap?

Encryption algorithms are usually based on hard mathematical
problems, like the problem of factoring large numbers used for
RSA or the discrete logarithm problem used in elliptic curve
cryptography. To use a similar approach for obfuscation, we
need to overcome several obstacles. The result of obfuscation
is, for example, usually supposed to be executable on a CPU as
it is, while ciphertext has to be decrypted before reading. So
we need to find a hard problem for transforming executable
code into obfuscated, but executable code that keeps the same
functionality.

The good news is that there are actually NP-hard problems
that can be and are used for obfuscation. One of these is the

Part I:
The Cryptologist’s view

SAT problem. In the obfuscation world, this usually comes as
opaque predicates or the problem of dead code elimination:
the adversary is deceived by a lot of if statements, and needs
to decide which of these always evaluate to "false" and are thus
never executed. Another example is using different pointers,
called aliases, to access the same value.

Unfortunately, these NP problems are difficult only in the worst
(or for us, best) case. A randomly chosen instance of the SAT
problem, for example, can usually be efficiently solved with a
logic solver.

For encryption algorithms like RSA, we have learned how to choose
good key pairs, i.e., instances of the underlying problem which
are actually difficult for our adversary to solve. For obfuscation,
this is still an open problem, and many of the commonly used
obfuscation techniques can, if considered one by one, eventually
be cracked by attackers. In addition, understanding the complete
program might not even be the goal of our adversary, as they
might just want to eliminate a license check.

How far are we from what we actually
need?

Encryption algorithms are usually designed in a way that
the adversary would need millions of years or more to solve
the underlying problem, and that there is a significantly low
probability of correctly guessing a secret key. In software
protection, depending on the use case, we might just want to
keep our adversary from cracking anything until a new version
of the software is published, or until the bulk of our prospective
income has been made with the protected software.

But even if currently known obfuscation techniques don't
(provably) achieve the same level of protection as encryption
methods, and even if single protection techniques can be broken,
the attacker is not necessarily able to crack our software. Multiple
obfuscation and integrity protection techniques can be used to
protect each other, achieving a very strong level of protection as
long as, for each attack technique, there is a protection technique
which prevents that attack. This opens the same kind of cat-and-
mouse game between attackers and protection that we already
know from cryptography, and that we invite you to experience in
the rest of this article.

THE VAULT | AUGUST 2023:::

28 29

Patching
Memory
Dumping

Hooking
Program

Simplification
SMT

Minimization
Debugging

Packing

Simple
Obfuscation

CF
Disguising

CF
Indirection

Anti
Debugging

Integrity
Checks

What about dynamic analysis?

While the mentioned obfuscation techniques effectively hinder
static analysis, dynamic analysis remains a viable avenue for
attackers. For instance, reconstructing the program's control
flow by debugging it is still possible. As the code must maintain
semantic equivalence and all relevant code blocks must
eventually be executed, attackers can utilize a debugger to step
through the program's execution and reconstruct the control
f low. By observing the program's behavior during runtime,
attackers can gain insights into its control flow and understand
the underlying logic.

To counteract the presence of debuggers at runtime, various
anti-debugging techniques have been developed. However,
many of these techniques are widely known and considered
ineffective, as tools exist that can automatically bypass or
disable such anti-debugging measures.

A more robust approach involves the use of integrity checks to
protect against code manipulations. By computing a checksum
of the code at runtime, programs can verify that their code
has not been altered. In the event of a mismatch, appropriate
actions can be taken to prevent further execution.

Integrity checks are highly effective in combating patching
and hooking techniques, as any modifications to the code are
automatically detected. Furthermore, these checks also provide
protection against debugging attempts. Debuggers typically
insert breakpoint instructions to pause program execution.
These instructions are detected by the integrity checks, thereby
preventing successful debugging.

maurice heumann studied computer
science at the Baden-Wuerttemberg
State University. He began program-
ming at the age of nine and started
working with reverse engineering at
14. Since 2019, he has been working
as a protection engineer at WIBU-
SYSTEMS AG, where he develops and
improves software protection solutions.
In his spare time, he reports software
vulnerabilities to renowned game
manufacturers.

How can obfuscation be implemented?

Finding the right defense techniques against attackers is an
important task. However, without the ability to incorporate
these techniques into software programs, their potential
remains dormant.

Leveraging compiler frameworks offers a practical solution to
that. Compiler frameworks, such as LLVM, offer the ability to
parse, optimize, and lower code for specific architectures. By
intervening in the optimization, additional obfuscation and
protection techniques can be seamlessly inserted into the code.

Wibu-Systems offers AxProtector CTP, a powerful product that
leverages the LLVM compiler framework to achieve efficient
obfuscation goals. With AxProtector CTP, a wide range of
defense techniques, including those mentioned earlier, can
be seamlessly integrated to enhance the security of various
applications. Additionally, it provides flexible licensing features
supported by trusted cryptographic algorithms. The synergy
between licensing, encryption, and obfuscation ensures optimal
protection for applications.

Thanks to the versatility of LLVM, AxProtector CTP supports
multiple operating systems, architectures, platforms, and
programming languages. Compared to other established
protection techniques, AxProtector CTP offers non-invasive
application security. It adheres to code integrity requirements,
such as those enforced by Apple, on Apple silicon machines.
This ensures that applications remain secure while maintaining
compliance with platform-specific guidelines, even without the
need for runtime code modification.

...ObfuscationLicensingOptimization...

OBFUSCATION VS ENCRYPTION: FRIENDS OR FOES?

Where does the attacker start?

In contrast to the theory, real-life attackers often begin
their analysis by examining programs in a disassembler. To
counteract this, software can be packed, using compression
or encryption, and then unpacked during runtime. However,
as previously mentioned, it is important to note that the
application code will eventually need to be decrypted for
execution. This creates a window of opportunity for attackers
to inspect and dump the memory contents after decryption,
allowing them to analyze the code and carry out runtime
patches, which is called binary hooking. Without employing
obfuscation techniques, it is not possible to prevent attackers
from analyzing program semantics.

What does obfuscation look like in
practice?

For greater security, attackers should be prevented from
actually comprehending the underlying code. One should not
rely merely on obstructing their analysis. Simple obfuscation
techniques can be employed to help us some way towards
this objective. These techniques involve injecting redundant
instructions or substituting instruction sequences with more
complex forms. By employing such obfuscation methods, it
gets harder for attackers to understand the code, providing an
additional layer of protection for the program.

Program simplif ication While simple obfuscation
techniques provide some initial barriers, they are rarely
sufficient to impede determined attackers from comprehending
the program logic in the long term. Attackers can utilize
program simplification methods to streamline obfuscated
code. This involves lifting the obfuscated code into an abstract
language known as intermediate representation (IR). The IR
can be subjected to various optimization techniques commonly
employed in compiler frameworks, resulting in a simplified
form of the program. This optimized representation can be
either translated back to assembly code or visualized through
decompilation, making it more accessible for attackers to
analyze and understand it.

Control f low disguising To address the limitations of
program simplification and the performance impact caused by
inserting redundant code, control flow disguising techniques
offer a viable solution. Instead of substituting instruction

sequences with complex forms, dead code is introduced into
the program. This dead code can appear arbitrary or resemble
the original code. The connection between the dead code
and the original program is established through the use of
opaque predicates. These opaque predicates take the form of
conditional statements whose evaluations consistently yield a
fixed result (either true or false). With that, the dead code is
never executed, and the performance impact is minimized, with
the exception of the opaque predicates themselves.

SMT-assisted minimization To overcome the challenge
posed by opaque predicates, attackers can employ SMT-assisted
minimization techniques. SMT, short for Satisfiability Modulo
Theories, generalizes the boolean satisfiability problem (SAT).
By utilizing symbolic execution, attackers can transform

Part II:
The Protector’s view

THE VAULT | AUGUST 2023:::

36

	Compose your original code
	Orchestrate your license strategy
	Fine tune your IP protection
	Distribute your work of art

Sounds easy, right?
And it is with CodeMeter

CodeMeter – A Symphony of
Software Monetization Tools

 +49 721 931720
sales@wibu.com
www.wibu.com

Start now and
request your
 CodeMeter SDK
 wibu.com/sdk

